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Abstract. Finding roots of a polynomial f(x1, . . . , xn), in a prime field Fp, is a basic question;
with a long history and several practical algorithms known. This question is open when we ask
it for roots mod pk, k ≥ 2. This is due to the difficulty of lifting singular Fp-roots to Z/⟨pk⟩.
Egs. f = x3

1 − px2
2, or f = x3

1 − p, modulo p2. Now, it is unclear how to even test the existence of
roots; as the only Fp-root here, x1 ≡ 0 mod p, starts behaving unpredictably when ‘lifted’ modp2.

In this work, we give the first algorithm to describe these roots in a practical way. Notably,
when n & degree of f are constant, our deterministic algorithm is polynomial-time (in k, p). Our
method gives the first efficient algorithms for the following problems —which were erstwhile open
even for n = 2— (1) to represent all (∞-many) p-adic roots, and (2) to compute Igusa’s local zeta
function. In general, ours is a new effective method to prove the rationality of this zeta function.
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1. Introduction

Roots of polynomials in fields and rings have played an important role in mathematics and
computer science for decades, with applications in a variety of topics. The roots of univariate
polynomials modulo prime powers are relatively easy to find as we can find the roots in finite
fields using factorization [CZ81, Ber67, Ber70, KU11, Rón87], after which we can efficiently lift the
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roots to modulo higher powers of p using the recent developments from [Pan95, BLQ13, DMS21].
However, even though we can factorize multivariate polynomials [Kal82, Kal85], their roots usually
do not correspond to a factor. Eg. even the irreducible polynomial y−x has numerous roots! Such
polynomials pose problems in root-finding as they have exponentially many roots in the base/prime
field itself, and we can not quickly guess which root will lift to mod p2. In our paper, we resolve
this issue by giving an efficient algorithm to find roots modulo pk for any p and k (given in unary);
assuming that the degree d of the polynomial and the number n of the variables, are both small.

Prime field Fp and p-adic integers Zp are unique factorization domains, and polynomials (above
them) behave in an expected way. There are some algorithms to factorize polynomials in Zp

[Chi87, CG00, GNP12]. However, the properties in rings of characteristic as prime powers, which
can be seen as a world between Fp and Zp, are still a mystery to us. There has been extensive
work in this since the famous Hensel’s lifting [Hen18, Zas69, Zas78], where factors of polynomials
are lifted from Fp to Z/pkZ. Several variants of Hensel’s lifting are available in various topics
in algebra & number theory; but they fail when the polynomial does not factorize into coprime
factors. This, when interpreted in terms of roots, means that it is difficult to lift singular roots
(i.e. of ‘multiplicity’ ≥ 2, as we will see later). There have been partially successful attempts
to tackle this, and achieve factorization of univariate polynomials mod pk [DMS21, Sir17, Săl05,
CL01]. Factorization modpk has only been solved until k ≤ 4. Due to this, we can not use
factorization, in any way, when finding roots modpk. Furthermore, due to the availability of
‘exponentially’ many factors, as well as roots, in these rings, its (data) structure has been of
interest in mathematics and computer science. Eg. [DM97, Mau01, GCM21] analyze root-sets
mod pk, while [DMS19, CGRW19, KRRZ20, DS20, RRZ21] count the number of roots for a given
polynomial. However, most of the works are restricted to univariate polynomials, as we did not
have practical algorithms to find even one root of bivariate polynomials mod pk. This paper gives
the first algorithm to find all the roots of an n-variate degree-d polynomial, over Z/pkZ resp. Zp,
efficiently (for fixed d, n and varying p, k), thus paving the way for many other problems.

Let us take a famous example as our algorithm’s special-case— Elliptic curves —they have been
of great interest to mathematicians and computer scientists over the past century (egs. integer
factoring [LJ87, Bre86], cryptography [Mil85], discrete logarithms [Gau00]). An elliptic curve can
be seen as the bivariate polynomial f(x, y) = y2 − x3 − ax − b. Similarly, its generalization, a
hyperelliptic curve, is given by the equation y2+u(x)y+ v(x) = 0. Rational roots of (hyper)elliptic
curves have been widely studied with several papers in this area [Sch95, MVZ93, LL03, LMMS94,
GH00, Ked01, Sat02, MCT02]. Our algorithm can find all (Z/pkZ)-roots (resp. p-adic) of not only
these, but general curves (that may have singularities).

Similarly, our algorithm finds certain roots of a fixed Diophantine equation, a question that has
been of interest to mathematicians for ages. A Diophantine equation is a polynomial equation,
whose solutions required are usually in Z or Z/NZ. If N is composite, we can find roots modulo
prime powers using our algorithm, and then use Chinese Remainder Theorem to find the solution
modulo N . Decidability of Diophantine equations is Hilbert’s 10th problem; famously, [DPR61,
Mat70] showed that computably enumerable sets can be written as a Diophantine equation.

Root finding and counting have interesting applications in complexity theory too. We know
that finding a solution to a system of constant-degree polynomials in any ring is NP-complete.
Our algorithm solves a special case: where we want a common solution of low-variate, low-degree
polynomials. Furthermore, root counting is a very hard problem. [EK90] showed that counting
the number of roots of a multivariate polynomial of degrees as small as 3 is #P-complete, while
[GGL08] showed that modular root counting, over Fq, is NP-hard for prime modulus other than
the characteristic of the field. [ZG03] also showed that the problem of computing Igusa’s local zeta
function is NP-complete even for p = d = 2 which can be shown from the arithmetization of SAT.
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There are more applications of roots of multivariate polynomials in different aspects of computer
science. [DMS21] reduced the problem of univariate-factoring in these rings, to finding roots of
a bivariate polynomial. In error-correcting codes, list-decoding of Reed-Solomon codes requires
finding roots of a bivariate polynomial in Fq[x1, x2] [GS98, Sud96]. Also, root finding of certain
polynomials in Fq is equivalent to maximum-likelihood decoding of Reed-Solomon codes [GGL08].
There have been some generalizations of list-decoding of Reed-Solomon codes to Galois rings,
G = Z[x]/⟨pk, ϕ(x)⟩ [DMS19, McD74, LN94]. More literature on error-correcting codes in Galois
rings can be found in [Sud97, CHJK+94, BLQ13, BW10]. Roots of multivariates also have several
applications in cryptography, which can be found in [BGGI09, Cop96b, Cop96a, Cop97, Cor04].

Root finding, and counting, of polynomials mod pk appears in analytic number theory and arith-
metic geometry [NZM91, Apo98]. An important topic that appears in mathematics is the theory
of zeta functions. Zeta functions have played a crucial role in mathematics and have applications
in diverse fields. The most important zeta function is the Reimann zeta function [Rie59], which en-
codes the distribution of primes [Con03, THB86]. [Rie59] used it to obtain a better approximation
bound on the prime number theorem, while several other applications of Riemann zeta function
have been developed in mathematics and other sciences. More work on zeta functions can be found
in [Apo10].

There has been extensive work on computing related zeta functions. [Ked04, Lau06] computes the
zeta function which encodes the size of a variety in finite fields and extensions, in time polynomial
in the characteristic p. Improving this, say to poly(log p), is a central open question. Our paper
too focuses on the regime of poly(p)-time. Recently, [Har15, CRW20] new algorithms on computing
this zeta function on special cases, however still in time poly(p).

In this paper, we are interested in another zeta function called the Igusa’s local zeta function
(Igusa’s LZF), used to encode the number of roots of a polynomial modulo prime powers. Local
implies that it is associated with p-adic analysis.

Formally, for a polynomial f(x) ∈ Zp[x], the Igusa’s local zeta function is defined as

(1) Zf,p(s) :=

∫
Zn
p

|f(x)|sp · |dx|,

for s ∈ C, where the real part of s is positive.
Igusa first proved that this function Zf,p(s) converges to a rational function. Followed by this,

[Den84] gave another proof for the rationality of this function. However, both the proofs of Igusa
and Denef were quite complicated and we give a much simpler proof by computing the Poincaré
series, which can be seen as a generating function for Zf,p(s). The Poincaré series for a polynomial
f and a prime p is defined as

(2) Pf,p(t) :=

∞∑
i=0

Ni(f) · (p−nt)i,

where t ∈ C, |t| < 1. Choosing t = p−s, we denote Pf,p(p
−s) =

∑∞
i=0Ni(f) · (p−np−s)i. [Igu07]

showed a connection between Poincaré series and Igusa’s LZF given as:

Pf,p(p
−s) =

1− p−s · Zf,p(s)

1− p−s
.

Notice that proving rationality of Poincaré series P (p−s) in ps implies the rationality of Igusa’s
LZF in ps and vice versa. We use this relation to show that Poincaré series is indeed a rational
function by counting roots modulo pk.

Despite the rationality being proved, explicit computation of this zeta function has remained a
challenge. Root counting helps in computing this using the Poincare series [DS20, ZG03, DH01],
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but has been restricted to univariates. Giving the first algorithm, we compute Igusa’s local-zeta
function for bivariates; thus, giving a new proof of its rationality as well.

1.1. Previous work. There have been several works on finding roots of polynomials in rings.
[Pan95] gave an approach for finding roots of univariate polynomials modulo prime-powers in
randomized polynomial time, which was greatly improved by [BLQ13]. [NRS17] further improved
the time complexity of [BLQ13] to find roots in these rings. We are aware of only one work studying
roots of bivariate polynomials mod pk [RRZ21], where they count the total number of roots if the
given polynomial f(x, y) can be written as f1(x) + f2(y), i.e. variable ‘separated’. On the other
hand, our algorithm does not require such assumptions.

Roots modulo pk can be seen as an intermediate-world between roots in Fp and roots in Zp. There
have been papers to find roots of system of polynomials in certain finite fields [HW99, LPT+17,
BKW19, Kay05]. However, for finding Zp roots, certain upper bounds given by N have been shown
in [BM67, Chi21] which state that the existence of a solution mod pN implies a Zp-root. Among

the improved results, [Chi21] showed N ≤ (nd)O(n32n). [DS20] showed N ≤ d(∆ + 1), where ∆ is
the discriminant-valuation; but it is only for univariate polynomials. We prove stronger structural
results for the p-adic-roots of multivariate polynomials, as discussed in Section 5.1.

Clearly, the literature suggests that roots behave “nicely” in Fp and Zp; but the properties

in Z/pkZ are quite different for ‘small’ k ≥ 2. In a way, our paper generalizes the approach of
[BLQ13] to nontrivially reduce root finding modulo pk to the problem of solving a multivariate
multi-polynomial system in lesser number of variables.

Computation of Igusa’s local zeta function, and its rationality via the Poincaré series, have also
been an important question in computational number theory. [Igu74, Igu77] proved the rationality
of the Poincaré series, while [Den84] proved the same for a system of polynomials. [DS20] gave the
first algorithm to compute Igusa’s local zeta function of univariates in (deterministic) poly-time. In
this paper, by describing the p-adic roots of multivariates, we give the first algorithm to compute
Igusa’s local zeta function practically, as well as re-prove the rationality of the Poincaré series.

1.2. Our results: Find roots in Z/pkZ, Zp, and compute the Poincaré series. Our results
give a new constructive understanding of the roots modulo p-power of multivariate systems. We
use a new data-structure in the form of a tree, to view these roots with increasing exponent of the
modulus. This tree data-structure, essentially, performs desingularization of roots— segregating
them until they are non-singular —and lift to the required exponent of the prime. Furthermore, we
devise a new data-structure called representative roots to represent the exponentially (or p-adically
infinite) many roots compactly.

Theorem 1.1 (Bivariates). Given a polynomial f(x1, x2) ∈ Z[x1, x2] of degree d, we can decide if
a root of f(x1, x2) mod pk exists, in deterministic poly((k+ d+ p)d) time. If roots do exist, we can
find and count all the roots (i.e. output them in a compact data structure).

Based on Theorem 1.1, we give the following two corollaries, both of which were open problems.
In a way, we bridge the gap between rings of the form Z/pkZ and Zp by giving better bounds than
existing works. Using this, we efficiently compute Igusa’s local zeta function.

Corollary 1.2 (p-adic). Given a polynomial f(x1, x2) ∈ Z[x1, x2] of degree d and the absolute
value of its coefficients bounded above by M > 0, we can find all the p-adic-roots of f (in Zp) in

deterministic poly((logM + d+ p)d) time (i.e. output their k digits in a compact data structure).

Corollary 1.3 (Local-zeta fn.). Given a polynomial f(x1, x2) ∈ Z[x1, x2] of degree d and the
absolute value of its coefficients bounded above by M > 0, we can compute the Poincaré series
P (t) =: A(t)/B(t) associated with f and a prime p, in deterministic poly((logM + d+ p)d) time.
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There are major dissimilarities between roots of univariate and bivariate polynomials. However,
n-variate polynomials, for ‘small’ n ≥ 2, behave in a roughly similar manner in our proof. Thus,
after describing root-finding of bivariates (Theorem 1.1), we sketch its generalization to n-variates.

Theorem 1.4 (n-variates). Given a polynomial system {fi(x1, . . . , xn) ∈ Z[x] | ∀i ∈ [m]} of
degrees ≤ d and the absolute value of its coefficients bounded above by M > 0. We can find
all its common (Z/pkZ)-roots, resp. its p-adic-roots, resp. its Poincaré series, in deterministic

poly((m logM + d+ p)(2d(n−1))n−1
) time.

1.3. Difficulty of the problem. The main focus of this paper is to find roots of a multivariate
polynomial mod pk. There do exist methods to find roots of multivariates in Fp resp. Zp. Many
algorithms require time exponential in log p [LPT+17, Chi21, HW99]. As we mentioned, arithmetic
in rings of the form Z/pkZ is more difficult than in Fp or Zp. Thus, the rings Z/pkZ have several
open problems, root finding of a multivariate being one of them. This paper addresses this issue
and introduces a datastructure that returns all the roots.

It is easy to lift a non-singular Fp-root, i.e. root of f mod p at which some first-order derivative

of f is nonzero, to any Z/pkZ (see Theorem 2.1 and Corollary 2.4). In contrast, our algorithm is
a significant advancement in the case when Fp-roots are singular. It can be viewed as a reduction
to non-singular roots, of a ‘higher’ dimension variety: which gets created while using the process
of lifting (eg. extend a root (x1, x2) of f mod pj to mod pj+1). In our method, the dependence on
p cannot be improved, as bivariates can have O(p) many roots at each step of lifting.

Practicalities. Though this algorithm is slow for large degree bivariates or large primes, it is the
first idea that works, for small degree d and prime p, much better than the brute-force algorithm.
Our general algorithm is doubly-exponential in n (= number of variables), but, unsurprisingly the
complexity is expected to be ‘bad’ in n as the problem of counting F2-roots (say, for a system with
d = 2) is already NP-hard and even #P-hard [EK90, ZG03, GGL08].

1.4. Proof overview: Root-Find(). We prove Theorem 1.1 by giving an algorithm that returns
all the possible roots modulo pk, of a given degree-d polynomial f(x1, x2) ∈ Z[x1, x2]. It designs a
compact data structure for this, and outputs what we call representatives.

The root-finding is done iteratively: find each p-adic coordinate which is a root at each step, and
perform lifting to higher coordinates; as is done in the case of univariates [BLQ13, DMS19, DMS21,
NRS17]. If (a1, a2) is a root of f(x1, x2) mod p, then we transform the polynomial to another
polynomial given by f(a1 + px1, a2 + px2). In order to find Fp-roots of this polynomial in the next
step, we remove the ‘extra’ p-powers by dividing by pv; where v := vp(f(a1 + px1, a2 + px2)) is the
‘val-multiplicity’ and vp(·) is the p-valuation (Definition A.2). We define this step, of transforming
the coordinates and subsequent division by the p-power, as the lifting step or lifting of roots. The
polynomial will be modified at each step such that its Fp-root returns a coordinate of the final

(p-adic resp. Z/pkZ) root. Notice that if (a1, a2) is an Fp-root of f(x1, x2), and after lifting, the

polynomial becomes f̃(x1, x2) := p−vf(a1 + px1, a2 + px2) which has an Fp-root (b1, b2), then
(a1 + pb1, a2 + pb2) is a root of f(x1, x2) mod pv+1. The univariate case of this lifting technique, as
developed in [BLQ13, DMS21], is explained in Section A.

However, it might so happen that root (a1, a2) in the lifting process does not lift to higher powers
of p; but some other root does lift, as illustrated by the following example.

Example 1.5. Consider f(x1, x2) := x31 − x32 + 3x2 − 3x1 + 5 and p := 5. (1, 1) and (2, 2)
are its Fp-roots. Starting with the root (1, 1), the process of lifting given by the transformation
(x1, x2) 7→ (1+5x1, 1+5x2) and division by 5, yields the polynomial 25x31− 25x32+15x21− 15x22+1
which does not have F5-roots. Although, restarting with the root as (2, 2) yields the polynomial
25x31 − 25x32 + 30x21 − 30x22 + 9x1 − 9x2 + 1 after lifting. (1, 0) is now its F5-root! This anomaly is
explained by a curious fact: (1, 1) is a singular root while (2, 2) is non-singular.
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. . .. . .

Figure 1. Branching along the tree

Thus, we iteratively loop over all the possible roots at each step, by fixing one variable, say x1,
with p-many possibilities, and finding the possible d-many (or p-many) values of x2.

Val-multiplicity vs valuation. For a polynomial f(x), we define the effective polynomial as
f(x) mod p, where the coefficients are in Fp (w.l.o.g. f(x) mod p is non-constant). Similarly, the
effective degree of f(x) is the degree of f(x) mod p. Unless specified otherwise, we will denote
d1 ≥ 1 as the effective degree of the polynomial at that step of lifting, while d ≥ d1 will be the total
degree. (d1 = 0 is trivial to handle.)

We define a local root of f(x) as a root of the effective polynomial f(x) mod p. For a local root
a ∈ F2

p, local valuation is defined as vp(f(a)). Similarly, val-multiplicity of local root is defined as
vp(f(a + px)), i.e., the minimum valuation of the coefficients of the polynomial thus formed; we
sometimes shorten it to val-mult(a). Obviously, val-multiplicity is at most the local valuation.

Branching w.r.t. val-multiplicities. As we have seen in Example 1.5, different Fp roots in
steps of lifting can give rise to different val-multiplicities. Thus, we create a tree (Fig.1), having
nodes as polynomials, say fj(x) in the j-th step of lifting, and branches arising from it corresponding
to each local root a ∈ F2

p. The children of this node will be the polynomials obtained from lifting by

the root corresponding to the branch, given by fj+1(x) := p−vfj(a+ px); where v := val-mult(a).
Theorem 2.1-(1) shows that val-multiplicity is at most the effective degree (denoted d1). Since

each local root corresponds to some val-multiplicity in [d1], we associate these roots with their val-
multiplicities. The branches of roots with the same val-multiplicity v, yield similar properties on
the structure of the polynomial after lifting. So, we denote them as a single ‘thick’ val-multiplicity
v branch (but they are in fact computed in several parallel val-multiplicity v branches and their
corresponding polynomials as nodes). Note: There are at most p2 local roots in F2

p.
The recursive steps of finding each precision coordinate can thus be seen as a tree, with each

branch/child seen as a root a ∈ F2
p of val-multiplicity in [d1]. If fj(x1, x2) mod p is a d1-form at a,

then it is in the ideal ⟨x1−a1, x2−a2⟩d1Fp[x]
(Lemma 3.1). This is our algorithm’s hard case of a root

with the maximum val-multiplicity, namely d1; so we need to branch into a special val-multiplicity
= d1 branch/node in the tree. We ‘stay’ here till all the chains of val-mult=d1 roots are explored
and stored in an array (D in Algo.1). This is done in the red subpart of the tree in Fig.1. Next, it
branches into the easier degree-reduction cases; which is denoted by the green nodes (enclosed by
the left rectangle in Fig.1).

As we go down the tree, we perform lifting computationally; in a way, depth h implies that the
polynomial has been lifted h times. This has been schematically portrayed in Figure 1, where the
red node is a more complicated transformation than the simple lifting (done in green node).

To summarize, the degree reduction case of local root is where effective degree reduces (v < d1
suffices, due to Theorem 2.1); while val-multiplicity d1 case is that when val-mult v = d1.

Degree reduction. The crux of Algorithm 1 lies in our Theorem 2.1 which states that op-
timistically the effective degree reduces “most of the time”. The algorithm ends when we either
have exhausted the power of p, denoted by k, or when the effective degree becomes 1. The latter
case has been explained in more details in Theorem 2.1, and the result implies that a root always
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exists once the effective degree has fallen down to 1; which is essentially (p-adic) Hensel’s lifting on
a linear polynomial [Hen18].

Since we have degree reduction, we expect the number of steps (or the tree-depth) to be O(d1).
However, the difficulty arises when the effective degree remains unchanged. Here, in the worst-case,
factors of pd1 are divided out of the polynomial in lifting steps, and the depth of the branching tree
(Figure 1) can extend to Ω(k/d1), which we can not afford as it would lead to iteratively going over

pΩ(k/d1)-many local roots; which is like the complexity of the brute-force algorithm.

Hensel’s Lifting. Given a non-singular root a of polynomial h(x), we can lift it to modulo
any p-power (like in Theorem 2.1-(2)), using a variant of p-adic Hensel’s lifting [Hen18]. Since a
is a non-singular root, at least one of the first-order derivatives of h(x) will not vanish. Corollary
2.4 implies that the val-multiplicity is then exactly 1, and in the next step of lifting, the effective
polynomial will be linear. If this linear polynomial is of the form m1x1+m2x2+m0, then (say) we
can fix x2 to any value in [p] and find the corresponding unique value of x1 to yield a root by simple
lifting. For the next p-adic coordinate, after lifting, these m1,m2 (coefficients of x1 resp. x2) will
not change; while m0 might change (due to the lifting performed in the non-effective part of the
polynomial). Thus, from Theorem 2.1-(2), we have the fact that the effective polynomial continues
to stay as linear, and we can fix the current-coordinate x2 to find the corresponding x1 every time;
enabling us to lift to modulo any p-power (for arbitrary fixing of x2 in this example).

Avoiding Ω(k) lifting steps. In Theorem 2.1, we show that the effective degree does not
reduce only if the val-multiplicity of the local root is d1. So, we consider the branches of degree
reduction as discussed in previous paragraphs, but tweak our algorithm carefully in val-mult = d1
case to prevent the depth of the tree (and the number of lifting steps) from blowing-up to Ω(k/d1).

We want branches of lesser val-multiplicity (< d1) originating from the branches of val-multiplicity
= d1 roots, where the effective degree reduces in each of them. So, we create a process of ‘re-
moving’ these contiguous val-multiplicity d1 nodes, instead of looping over all of them; and re-
cursively call the root-finding function on each of the degree-reducing branches arising from this
single node/polynomial. This removal-process is guided by something called d1-forms (Lemma
3.1), and will be subdivided into single and multiple val-multiplicity d1 roots. (1) When multiple
val-multiplicity roots exist, we show in Lemma 3.2 that the polynomial has a special form (namely
d1-power). We traverse these cases in a contiguous way. (2) Next we traverse over cases where
val-multiplicity d1 root is unique. At the end, when we encounter lesser val-multiplicity roots, we
recursively call the root-finding algorithm. Overall, we find the lengths of these contiguous traver-
sals, as well as the possibilities of the underlying d1-powers resp. unique-roots. This is discussed in
the latter-half of Section 3, by considering a dynamic basis-change on the variable set x, so that we
do not have to iterate over ‘too many’ local roots. This is done by employing the idea of [BLQ13]
to find representative-roots of a univariate polynomial system.

Summarizing this case of val-mult=d1 roots, we showed that the possibilities of contiguous chains
is small (i.e. polynomial in k, d), and every lesser val-multiplicity branch appearing from these chains
is in a degree reduction case. So, in the tree (Fig.1) an intermediate red node is created that ‘jumps’
over all the val-mult=d1 cases (Sections 3–4). This bounds the depth of our tree to 2d.

Stopping condition and representative roots. The algorithm terminates when either a
root gets completely specified mod pk, or when effective degree ≤ 1 (any of its roots can be Hensel
lifted all the way to our required power of p), or when no root exists. In the third case, the root-set
returned is just the emptyset ϕ, while in the first case it is a singleton.

For the second case, roots will be returned in terms of representative roots (Definition A.3).
Eg. when the lifted polynomial is zero modulo pℓ, any value in Z/pℓZ is a root, and thus we
return ∗1 resp. ∗2 for the coordinates x1 resp. x2, which represent the entire Z/pℓZ. The roots
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returned will be (∗1, ∗2), with the number of possibilities being p2ℓ. This will be termed as our
usual representative root.

When the effective degree is 1: as we sketched before, we can fix one variable as a local root and
find the value of the other variable. In such a fashion, given any value of one coordinate, say x1, we
can find each p-adic coordinate of x2 one by one. Even if only one variable is present in the linear
form, say x2, the other variable x1 will still be free, and for any given value of x1, denoted by ∗, we
can find the corresponding values of the local roots of x2, and thus a root of the polynomial modulo
pℓ. Let us denote this function for determining x2 from any value of x1 by c(·), which simply finds
each coordinate of x2 using Hensel’s lifting. Thus, the output can be denoted as (∗, c(∗)). The
number of roots in this expression is pℓ. (Note: This can contribute more roots to the original
f mod pk, so a more careful calculation is done in Section 5.2.) This type of representative root
will be termed as linear-representative.

Pseudocode. Based on these ideas, we sketch our Algorithm. Its main procedure is the
Root-Find() function in Algorithm 1. It takes as input: the polynomial fj(x1, x2) and the number

pkj (k =: k0 initially). The algorithm starts with calling Root-Find(f(x1, x2), p
k). If there are

valid roots, it outputs the set of roots R ⊆ (Z/pkZ)2, otherwise returns ϕ.
The submodule of Remove-d1-Form() in Algorithm 2 is a procedure to eliminate intermediate

computations where effective degree does not decrease. In a way, it speeds-up the search for roots
to higher precision coordinates, by jumping over contiguous cases of roots of val-multiplicity d1.
Remove-d1-Form() outputs an array of: linear transformation which can be used to jump over the
val-multiplicity d1 roots, or linear-representative root which directly becomes part of the output.

Algorithm 1 Root Finding of fj(x1, x2) mod pkj

1: procedure Root-Find(fj(x1, x2), p
kj)

2: if kj ≤ 0 OR fj(x1, x2) ≡ 0 mod pkj then return (∗1, ∗2)
3: Define d1 := deg(fj mod p), R := ϕ.
4: if d1 = 1 then
5: return linear-representative (∗, c(∗)) or (c(∗), ∗), where c(·) is given by Hensel’s Lifting.

6: for a1 ∈ {0, p− 1} do
7: for a2 such that fj(a1, a2) ≡ 0 mod p and val-mult(a)< d1 do
8: fj+1(x1, x2) := p−vfj(a1 + px1, a2 + px2), where v := vp(fj(a1 + px1, a2 + px2)).

9: S := Root-Find(fj+1, p
kj−v)

10: R := R ∪ (a+ pS)

11: if val-multiplicity= d1 root exists then
12: D := Remove-d1-Form(fj , p

kj )

13: for (r1 + pi1L1, r2 + pi2L2, i3) ∈ D do

14: Write fj in basis {L1, L2} to get f̃j(L1, L2) := fj(x1, x2).

15: Lift it to f̃j(L1, L2) := p−i3d1 · f̃j(r1 + pi1L1, r2 + pi2L2).
16: if kj − i3d1 ≤ 0 then
17: The roots will be (r1 + pi1 · ∗1, r2 + pi2 · ∗2) in (L1, L2) basis.

18: Consider the tuple (r1 + pi1 · ∗1, r2 + pi2 · ∗2) and perform the inverse linear
transformation from (L1, L2) to (x1, x2) on this tuple as a whole. Store this
representative root (with two independent ∗’s) in a set S

19: R := R ∪ S
20: else
21: For f̃j mod pkj−i3d1 , find the val-mult < d1 local roots and then recursively find

all the roots; as done in Steps 6-10. Let this be given by the set R̃.
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22: For each root (r̃1, r̃2) ∈ R̃ of f̃j mod pkj−i3d1 : consider (r1 + pi1 r̃1, r2 + pi2 r̃2) and
perform inverse linear transformation from (L1, L2) to (x1, x2) on them. Store
these final roots (mod pkj ) in a set S.

23: R := R ∪ S

24: return R

2. Evolution of effective degree during lifting steps

In this section, we analyze the effective degree at each step and look more closely as to when this
decreases, or remains the same, by looking at the val-multiplicity of the local root during lifting.
The proof idea is to analyze the monomials in terms of x1 and x2, and see how they behave after
the transformation (x1, x2) 7→ (a1 + px1, a2 + px2) followed by division by appropriate power of p.
This can be summed up by the following theorem.

Theorem 2.1 (Degree reduction). For a polynomial f(x1, x2) ∈ (Z/pkZ)[x1, x2], given an F2
p-root

(a1, a2) of f(x1, x2), let us denote g(x1, x2) := p−vf(a1 + px1, a2 + px2), where v := vp(f(a1 +
px1, a2+px2)). Let the previous effective degree be d1 := deg(f(x1, x2) mod p) and current effective
degree be d2 := deg(g(x1, x2) mod p). Then the following holds:

(1) If d1 > 1, then d2 ≤ v ≤ d1. (So, d2 = d1 only if v = d1.)
(2) If d1 = 1, then d2 = 1.

Before proving this, let us first see the degree evolution in some concrete examples.

Example 2.2. Let us see how the effective degree could reduce. Consider f(x1, x2) = x21+x32 mod p.
This has degree d1 = 3. Clearly, (0, 0) is its root modulo p. So, apply the transformation (x1, x2) 7→
(0 + px1, 0 + px2), to get g(x1, x2) := p−2f(px1, px2) = x21 + px32, which has effective degree d2 =
2 = v < d1.

Example 2.3. Let us see why the effective degree might remain unchanged in ‘many’ steps (which
is bad for us). Consider f(x1, x2) = x31 + x32 + p9(x1 + x2 − 1) mod p10. Then, around its root
(0, 0), use the translation (x1, x2) 7→ (0 + px1, 0 + px2) and division by p3, to reduce to a simpler
g(x1, x2) := x31+x32+p6(−1) mod p7. We do this two more times to reduce to a simpler g(x1, x2) :=
x31 + x32 − 1 mod p. In these three steps, the degree = 3 = v did not reduce. However, if p ̸= 3, then
the degree will finally reduce in the fourth step. [If p = 3 then proceed with g := x1 + x2 − 1.]

Proof of Theorem 2.1. We have two cases.
Case 1: d1 > 1. We have a local root (a1, a2) such that v = vp(f(a1 + px1, a2 + px2)). Using

Taylor’s expansion (Definition A.1), we can write the polynomial in the form (say over Zp)

(3) f(a1 + px1, a2 + px2) =
d∑

ℓ=0

∑
|i|=ℓ

∂xif(a)

i!
· (px1)i1(px2)i2

 ,

where d := deg(f). The terms in Equation 3 need to vanish modulo pv for all ℓ ≤ v. In particular,

pv−|i| | ∂xif(a)i! . Suppose v > d1, then by the above equation f(a1+x1, a2+x2) ≡ 0 mod p, implying
f(x) ≡ 0 mod p, which contradicts with d1 > 1. Thus, v ≤ d1.

However, we do have a term which has valuation exactly v (= val-multiplicity of the local root),
and this can be obtained only from monomials where i1+i2 ≤ v (that too in the effective polynomial
part). So, the highest degree term surviving among these (in g mod p) has degree d2 ≤ v ≤ d1.

Remark: The case of d2 = d1 implies that v = d1. Thus, pv−|i| | ∂xif(a)i! for all orders |i| < d1;
while, some order-d1 partial-derivative at a has p-valuation exactly 0.
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Case 2: d1 = 1 (Hensel’s Lifting). Write f(x1, x2) =: f1(x1, x2) + p · f2(x1, x2). We have the
effective polynomial deg(f1(x)) = 1, and hence it can be written as a linear polynomial m1x1 +
m2x2 + m0. Since (a1, a2) is a local root, we transform f to get m1(a1 + px1) + m2(a2 + px2) +
m0 + p · f2(a1 + px1, a2 + px2). Dividing by p, and going modp, we get in the next step to another
linear polynomial: m1x1 +m2x2 +m′

0. So we end up with d2 = 1. □

Using the proof of Theorem 2.1, we get a corollary on partial derivatives of f(x), which motivates
the inclusion of the term ‘multiplicity’ in our new concept of ‘val-multiplicity’.

Corollary 2.4. Local root a of f(x) has val-multiplicity ≥ v, if and only if pv−|i| | ∂xif(a)i! , for all
orders |i| < v.

Remark 2.5. Implicitly, the above proofs of Theorem 2.1 and Corollary 2.4 needed d < p so that
the factorials could appear in the denominators (in Equation 3). For smaller p, the same proof
works ‘syntactically’. Formally, consider the Hasse derivatives instead of partial-derivatives.

Using this theorem, we can get an idea of how the effective degree reduces. If a root (a1, a2) ∈
F2
p is such that f(a1 + px1, a2 + px2) ̸≡ 0 mod pd1 , then we can keep applying the appropriate

transformation (x1, x2) 7→ (a1 + px1, a2 + px2), until the effective degree reduces to 1. Once this
effective degree has reduced to 1, we have a compact description of all its roots: as we can arbitrarily
fix one variable and uniquely find the p-adic value of the other variable.

However, the problem arises when the root (a1, a2) is such that f(a1+px1, a2+px2) ≡ 0 mod pd1 .
In this case, the degree may not reduce, and we might need to keep lifting to k/d1 steps. This is
computationally infeasible, the search-tree becomes very large, and takes time exponential in k/d1.
We tackle this case in the next section.

3. Structure of f via rank of local roots of val-mult=d1

We need to handle the challenge of our local root a of f having val-multiplicity v = d1. Here,
the effective degree does not reduce in the next step. We first show the structure of such f(x1, x2).

Lemma 3.1 (d1-form at a). If a ∈ F2
p is a root of f(x) mod p such that f(a1 + px1, a2 + px2) ≡

0 mod pd1, where d1 is the effective degree of f , then f(x) ∈ ⟨x1 − a1, x2 − a2⟩d1Fp[x]
.

Proof. Recall Taylor’s expansion (Definition A.1) and Corollary 2.4. Write f(x) as f((x1 − a1) +
a1, (x2 − a2) + a2) =

∑∞
ℓ=0Aℓ, where,

Aℓ :=
∑
|i|=ℓ

∂xif(a)

i!
· (x1 − a1)

i1(x2 − a2)
i2 .

By Corollary 2.4, we know that the At’s, for t < d1, vanish modulo p as the root has val-multiplicity
v = d1. Furthermore, for t > d1, At’s vanish modulo p; as f has effective degree d1 and this At has
derivatives of order > d1. Thus, all At’s, apart from Ad1 , vanish modulo p. So, the polynomial f
is of the form

∑
i ci · (x1 − a1)

d1−i(x2 − a2)
i, which is the required d1-form in x− a. □

In Lemma 3.1’s situation, if a is unique, then using the structure of f we can easily find the root
(eg. a simple search in F2

p), and lift without getting into multiple val-mult=d1 branching. A serious
obstruction arises when there are several local roots a of val-multiplicity = d1. We will now show
the extra special structure of such an f(x1, x2).

W.l.o.g let 0 be a local root of val-multiplicity = d1. This means that f ∈ ⟨x1, x2⟩d1Fp[x]
. If another

local root a ̸= 0 exists with val-multiplicity = d1, then we also have f(x) ∈ ⟨x1 − a1, x2 − a2⟩d1Fp[x]
.

So, f ∈ ⟨x1, x2⟩d1 ∩ ⟨x1 − a1, x2 − a2⟩d1 , over Fp[x]. Then, we show f to be a perfect-power!
10



Lemma 3.2 (Two val-mult=d1 roots). For a polynomial f ∈ Fp[x1, x2] of degree d1, if f ∈
⟨x1, x2⟩d1Fp[x]

∩⟨x1−a1, x2−a2⟩d1Fp[x]
, for some a ̸= 0 ∈ F2

p, then we have f ≡ c(a2x1−a1x2)
d1 mod p,

where c ∈ F∗
p.

Proof. W.l.o.g., assume that a1 ∈ F∗
p. Thus, we have

⟨x1 − a1, x2 − a2⟩d1 = ⟨x1 − a1, a1x2 − a1a2⟩d1

= ⟨x1 − a1, a1x2 − a1a2 − a2(x1 − a1)⟩d1

= ⟨x1 − a1, a1x2 − a2x1⟩d1 .

(4)

Also, ⟨x1, x2⟩d1 = ⟨x1, a1x2 − a2x1⟩d1 (as a1 ̸= 0). The intersection of these two ideals modulo
the ideal ⟨a1x2 − a2x1⟩ is: ⟨a1x2 − a2x1⟩ + ⟨x1(x1 − a1)⟩d1 (as x1 and x1 − a1 are coprime mod
a1x2 − a2x1). Since f has effective degree less than 2d1, we deduce: (a2x1 − a1x2) | f .

The quotient f/(a2x1−a1x2) ∈ ⟨x1, a2x1−a1x2⟩d1−1∩⟨x1−a1, a2x1−a1x2⟩d1−1. Clearly, degree
of this quotient polynomial is d1−1. So, we can repeat this process to show that (a2x1−a1x2)

d1 |f ;
which makes the two equal up to a constant multiple. □

Hence, we see that if a polynomial f has two val-mult=d1 roots with one of them being zero
and the other being a ̸= 0, then the effective polynomial f mod p is of the form (a2x1 − a1x2)

d1 .
This means that f is d1-th power of a linear polynomial iff rank of the val-mult=d1 roots is two
(i.e. multiple such roots). In the case of unique val-mult=d1 root we will call the polynomial
d1-nonpower-form, while that for multiple val-mult=d1 roots, we call the polynomial d1-power.

Branching in d1-nonpower-form. In this case, find the unique val-multiplicity d1 root, and
do the lifting step. There is no branching required.

Branching in d1-power. W.l.o.g. the effective polynomial will be of the form (a2x1 − a1x2)
d1 .

So, there are p roots (of val-mult=d1): (a1t, a2t) for any t ∈ Fp. This leads to branching, which we
will avoid, by taking a different route.

The first observation (Lemma 3.3) is that d1-nonpower-form can not lead to a d1-power. Thus,
we deduce that whenever a contiguous chain of d1-power lifting ends, then every d1-form in the
subsequent contiguous lifting steps is a d1-nonpower-form.

Lemma 3.3 (Nonpower to power?). If f is a d1-nonpower-form having a single val-mult=d1 root
a, then its lift p−d1f(a+ px) is not a d1-power.

Proof. W.l.o.g. we can assume a = 0. Since the effective polynomial is a d1-form having (0, 0) as
the root, it is of the form

(5) f(x1, x2) ≡
d1∑
i=0

cix
i
1x

d1−i
2 mod p .

After lifting given by (x1, x2) 7→ (px1, px2), followed by division by pd1 , this polynomial will become

d1∑
i=0

cix
i
1x

d1−i
2 + g(x1, x2) ,

for some polynomial g of degree ≤ d1 − 1. Suppose this lift is a d1-power, say (L +m0)
d1 mod p,

where m0 ∈ Fp and L is a linear form in x1, x2. Now comparing the degree d1 homogeneous parts

in all these equations, we conclude that f ≡ Ld1 mod p. This contradicts the fact that it was a
d1-nonpower-form. Therefore, d1-nonpower-forms can not become d1-powers in one lifting step. □

So we mainly need to study the case where: a d1-power, say Ld1 is followed by another d1-power,
say L′d1 , in the next lifting step. In the next subsection we unearth the structure that goes in the
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formation of L′ after lifting the polynomial Ld1 + ⟨p⟩. This will give us the optimized bound on the
branching of the red-nodes of the tree.

3.1. Structure of consecutive d1-powers. For a d1-form, the effective polynomial f(x1, x2) mod
p will be of the form Ld1 , for some linear polynomial L (eg. x1+x2+1). W.l.o.g. assume {L, x2, 1}
to be of rank=3 (over Fp). Let us rewrite f in the basis {L, x2}, instead of {x1, x2}, denoted by

f̃(L, x2) (= f(x)). Since it is an invertible linear transformation, it now suffices to find roots of

(6) f̃ =: Ld1 + p · Ld1−1 · u1(x2) + p · Ld1−2 · u2(x2) + · · ·+ p · ud1(x2) .

Lift d1-power to d1-power. Suppose after lifting by p−d1 f̃(pL, x2), the effective polynomial is
again a d1-power; then it has to be the case that

(7) Ld1 + Ld1−1 · u1(x2) + Ld1−2 · u2(x2)/p+ · · ·+ ud1(x2)/p
d1−1 ≡ (L+ u1(x2)/d1)

d1 mod p ,

for some univariate polynomials uj ’s, such that Equation 7 is a perfect power of the linear poly-
nomial L + u1(x2)/d1. Consequently, those local roots a2 for which the above system is satisfied,
transform previous L to p (L+ u1(a2)/d1) in this lifting step.

Considering RHS expansion, we also obtain equations, for j ∈ [d1], as

(8) uj(x2) ≡ pj−1

(
d1
j

)
· (u1(x2)/d1)j mod pj .

Note: In case p|d1, the above modulus can be further increased to clear away p-multiples from the
denominator. In this fashion, we create a system of modular equations (in x2) for the first step of
lifting. Moving on, we consider the next lift.

Two consecutive d1-power liftings. The effective polynomial after the first step was (L +
c(x2))

d1 . Let us look at the polynomials obtained before division by pd1 . It was (pL+ pc(x2))
d1 +

⟨pd1+1⟩. Composing this with another lift of the same kind, the polynomial has to be of the form
(p(pL+pc(x2))+p2c̃(x2))

d1+⟨p2d1+1⟩. This implies that we can as well directly lift L 7→ p2L, divide

by p2d1 , and find the value of c(x2) + c̃(x2). So, Eqn.7 can be replaced by the lift p−2d1 f̃(p2L, x2)
equalling a d1-power:

(9) Ld1 +Ld1−1 ·u1(x2)/p+Ld1−2 ·u2(x2)/p3+ · · ·+ud1(x2)/p
2d1−1 ≡ (L+ u1(x2)/pd1)

d1 mod p ,

Furthermore, we can write down the univariate modular equations like Eqn.8.
In this way any i-length contiguous chain of d1-power liftings, can be directly written as a system

of univariate modular equations like Eqn.8. It comes from the constraint that the lift p−id1 f̃(piL, x2)
has to equal a d1-power mod p. Next, this system can be solved by adapting [BLQ13] (see Algorithm
3) to get the representative roots for x2 variable. Of course, on substituting this in x2, we will
know the final d1-power L

′d1 that the i many lifts yield.

How many consecutive d1-powers? The length of this chain can be at most k/d1. So, we go
over all i ≤ ⌊k/d1⌋. Iterating over them in decreasing order, we find all the possible ways of getting
d1-powers (before moving to other cases). This ensures that we do not miss any (Z/pkZ)-root of f
in the search-tree.

This can be illustrated through the following examples.

Example 3.4. Consider the polynomial f(x1, x2) = x21 mod pk. The d1-power contiguous chain

will be of length k/2; and each time L = x1. The corresponding root will be (pk/2 · ∗1, ∗2).

Example 3.5. We use a slightly more complicated polynomial this time, with f(x1, x2) = (x1 +
x2)

2+p(2(x1+x2)x2+px22)+p6h(x1, x2). Here the contiguous chain of d1-power liftings has length

3. The first linear polynomial is L := x1 + x2 and the base-change gives f̃(L, x2) = L2 + p(2Lx2 +

px22) + p6h̃(L, x2).
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The polynomial after another lifting will be (L + x2)
2 + p4h̃(pL, x2). Now, the new linear form

will be L′ := L+ x2. This we can continue lifting, keeping L′ unchanged, for 2 more steps.

Notation for x2 representatives. A problem arises when the representative for x2 is ∗2,
i.e. x2 can take any p-adic value. Eg. if we lift f = Ld1 + pd1xd1+1

2 (with free x2 = ∗2) then

we get g := Ld1 + xd1+1
2 . The degree of the new polynomial has now increased, which we never

want to happen in our tree branchings. In order to prevent this, we preprocess the representative
root x2 = ∗2 by increasing the precision by one coordinate, and thus increasing the number of
representative roots by a factor of p (hence, more branchings in the tree). In other words, we
consider the representative as a+ p · ∗2, for a ∈ {0, . . . , p− 1}.

The following lemma shows that the effective degree never grows in lifting steps, in our algorithm.

Lemma 3.6 (Degree invariant). The effective degree in each transformation described for d1-forms
is always d1.

Proof. Let us follow the above notation in the basis {L, x2} and start with effective degree d1. We
now know that every lifting step looks like the map: L 7→ pL and x2 7→ a2 + pi2x2 (for some i2 ≥ 1
and integer a2), followed by division by pd1 . As we calculated in Theorem 2.1, such a lifting step
yields effective degree ≤ d1. Since we are in the d1-form case, this implies that the effective degree
remains d1 always. □

Summing up. The structure discovered above gives a natural pseudocode that we describe in
Algorithm 2. The contiguous val-mult=d1 chain will have some d1-powers, say i1 many, followed
by i3 many d1-nonpower forms, from which we have i1 + i3 ≤ k/d1. The d1-nonpower forms can
not lead to d1-powers again, due to Lemma 3.3. Also, to get the i1 many d1-powers, we need to use
Algorithm 3 and get representatives R1 for x2 (in general L2, independent of L1). Going over each
i1, i3 ≤ ⌊k/d1⌋, and each of the representatives R1, we compute the intermediate representative-
roots R (and could continue with our recursion on the local roots with subsequent degree-reduction).
This algorithm makes sure that we ‘jump’ the cases of val-mult=d1= effective-degree quickly and
reach the degree-reduction branchings of the tree.

4. Remove-d1-Form() subroutine: Proof of Theorem 1.1

In Algorithm 1, since we are iterating over all the possible roots (O(p2d)-many), we do not want
the lifting to go on for several steps, since the time complexity is exponential in the number of
steps (=tree-depth). The favorable case is when the effective-degree reduces, e.g., when the val-
multiplicity of local root is < d1 (from Theorem 2.1). As we will see, once we organize all the
possible branches in the tree as portrayed in Figure 1, which is a modified branching w.r.t. all
possible val-multiplicities, the effective degree will reduce at each level when we go down the tree.
This is what the Remove-d1-Form() subroutine will achieve inside the red nodes. In this section
we sketch the pseudocode based on the ideas developed in Section 3.1.

Data structure returned. In order to lift in such a way, we return an array of tuples of the
form (a1 + pu1L1, a2 + pu2L2, u3). This gives us information on jumping over the val-multiplicity
d1 roots by first covering the d1-powers followed by d1-nonpowers. This is done in a basis (L1, L2)
of variables possibly different from (x1, x2). As in Equation 9, we form equations in terms of L2

and find the roots, such that after lifting according to these (representative) roots, the effective

polynomial will be Ld1
1 . Note that in each lifting according to the fixed part of the representative

root, the linear polynomial will change by only a constant. Therefore, {1, L1, L2} will also span
the same space as that of {1, x1, x2}. So, given a root in (L1, L2) basis, we can recover the root in
(x1, x2) basis uniquely.
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With information from this tuple, we can do the following sequence of liftings in ‘one-shot’:
i1-steps of d1-powers, followed by i3-steps of d1-nonpower-forms.

Pseudocode. Summing up, Remove-d1-Form( ) in Algorithm 2 is a subroutine used in Root-
Find( ) in order to jump over the intermediate local roots of val-multiplicity d1 without invoking
recursive-branching. After this, we find the local roots of val-multiplicity < d1 and continue recur-
sively to degree reducing cases in Root-Find( ) (Steps 6-10 of Algorithm 1).

The input is the polynomial with and the prime-power, while the output is a tuple of linear
polynomials, denoting intermediate representative-roots (over (Z/pkZ)2), and length of the d1-
forms chain covered.
Algorithm 2 Finding consecutive intermediate val-mult=d1 roots in one-shot

1: procedure Remove-d1-Form(f(x1, x2), p
k)

2: Define d1 := deg(f mod p), R := ϕ.
3: for i1 ∈ {⌈k/d1⌉, . . . , 0} do
4: R1 := ϕ

5: Find the linear polynomial L such that f ≡ Ld1 mod p. If L is x2-multiple, then set

L2 := x1, otherwise set L2 := x2.

6: Compute the (basis-change) polynomial f̃ such that f̃(L,L2) = f(x1, x2).

7: Write f̃ as in Equation 9 and form (univariate, modular) equations like Equation 8 in

terms of polynomials in L2 such that i1-many contiguous d1-powers exist (Section 3.1).

8: Find the representative-roots, in Z/pi1d1Z, of the system of equations formed in terms

of L2 (as in the previous step) using Algorithm 3 and store them into R1.

9: for each representative-root r2 + pi2∗ ∈ R1 do
10: Find linear polynomial L1 obtained in the end, by substituting the representative in

L2, using the method of Section 3.1. Note: i2 ≥ 1 and L1 has to be of the form L+ c
for some integer c.

11: Write f̃(L,L2) in basis L1, L2 given by g(L1, L2) := f̃(L,L2).

12: Lift g(L1, L2) := p−i1d1 · g(pi1L1 , r2 + pi2L2)
13: for i3 ∈ { ⌈k/d1⌉ − i1, . . . , 0} do
14: if ∃r′ ∈ (Z/pi3Z)2 s.t. g is a d1-nonpower-form consecutively i3-times then
15: In each precision r′ is unique; so it can be searched easily in the space F2

p.

16: R0 := ( pi1r′1 + pi1+i3L1 , r2 + pi2r′2 + pi2+i3L2 , i1 + i3 )
17: if R0 ̸∈ R then
18: R := R ∪ {R0}
19: else
20: break

21: return R

4.1. Proof of correctness of Algorithm 1. We prove the correctness of our root finding algo-
rithm (Algorithms 1 and 2) in the following theorem.

Theorem 4.1 (Correctness of Algorithm 1). Given a polynomial f(x1, x2) ∈ Z[x1, x2] of degree d,
a prime p and an integer k. Algorithm 1 using Algorithm 2 as a subroutine, correctly returns all
the roots (a1, a2) ∈ (Z/pkZ)2 of f(x1, x2) mod pk, in deterministic poly((k + d+ p)d) time.

Proof. In this proof, we will analyze the structure of the roots-tree given by Figure 1. As described
in Sections 1.4 and 4, all the green nodes in this tree are in degree-reducing cases since we are calling
the recursion to the next step using Root-Find( ) only on val-multiplicity < d1 roots (Steps 9 &
21 of Algorithm 1).
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Thus, whenever we go down this tree by iterating over all the roots of val-multiplicity < d1,
effective degree d1 decreases by at least 1. Here, we fix one variable to any value in {0, . . . , p− 1},
and find the p-many possibilities of the other variable. The red node of Figure 1 also gives val-
multiplicity < d1 roots after two levels in the tree. Thus, the depth of this tree is at most 2d, after
which we reach the leaves. At a leaf, either the precision of pk has been reached fixing a root, or
the effective polynomial has become linear, or no root exists.

For the width/fanin of the tree, the number of possible lengths of d1-powers is ⌈k/d1⌉ = O(k),
while that of d1-nonpower-forms is also O(k). Therefore, the number of possibilities of lengths of
val-mult=d1 branches is O(k2). In Algorithm 2, all the val-mult=d1 branches of length i1 + i3 for
i1-length contiguous d1-powers and i3-length contiguous d1-nonpower-forms are returned. As we
have seen in Section 3.1, we can solve for the intermediate values of L2, from which we find the
appropriate L1 too, such that d1-powers are possible. After this, we come straight down to the d1-
nonpower-forms. Furthermore, from Theorem A.4 and Equation 8, the number of representatives
for L2 is O(d), which may become O(pd) after preprocessing to handle ∗.

This bounds the number of roots returned by Remove-d1-Form(f, p
k) by O(k2dp). In a de-

terministic version of Algorithm 3, we exhaustively search for every L2 root at each step, so its
complexity is poly(kdp)-time. Therefore, all the operations inside Remove-d1-Form() can be
performed in poly(kdp)-time.

Since the depth of the tree is 2d (in Fig.1), the total size of the tree gets bounded by poly((k+d+
p)d). Since all other operators are usual field operations and search in Fp, the net time complexity
of our algorithms is just a polynomial overhead of going over all these nodes. This proves the
complexity to be deterministic poly((k + d+ p)d)-time. □

Proof of Theorem 1.1. Algorithm 1, using Algorithm 2 as a subroutine, correctly returns all the
roots of f(x1, x2) mod pk, in a representatives form, in deterministic poly((k + d + p)d) time (due
to Theorem 4.1)

By the time the algorithm terminates, we will have O((k2dp)d) leaves of the tree, where we have
either found roots or encountered a dead-end. If roots exist, then each such leaf signifies that either

(1) we reached pk and a fixed root (a1, a2) is returned,
(2) or, we reached pk and (some invertible linear transformation of) the representative (pi1 ·

∗1, pi2 · ∗2) is returned. The total number of roots in this case is p2k−i1−i2 ,
(3) or, when the effective polynomial becomes linear and (∗, c(∗)) is returned (or some invertible

linear transformation of it); where ∗ represents all values in Z/pk−iZ. Here, we fix only one
variable to find the value of the other at each step for k − i Hensel lifts, implying that the
number of roots is pk−i.

Using this technique to sum over all the leaves which do not lead to dead-ends, we can count the
total number of roots in deterministic poly((k + d+ p)d) time. □

5. Other results: Proofs overview

5.1. Computing p-adic roots: Proof of Corollary 1.2. In this subsection, we give a bound
for k0 in terms of the degree d and the maximum absolute value M of the coefficients, such that
finding a root modulo pk0 would imply finding all representative Zp-roots of f .

Preprocessing– Reduce to radical case. We are concerned with the roots of f(x1, x2) in Zp,
which is an integral domain (with fraction field Qp). The polynomial will have a unique factorization
in Zp, which will be of the form

(10) f(x1, x2) =

r∏
i=0

gi(x1, x2)
ei ,
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where gi(x1, x2)’s are coprime over Zp. Even if f has some square-full factors (some ei’s are ≥ 2), we
can eliminate them efficiently, by computing its gcd with the first-order derivatives. This will result
in the new polynomial being of the form

∏r
i=0 gi(x1, x2) , which we will call the radical polynomial

rad(f). The polynomial f and its radical rad(f) have the same set of roots in Zp. In the following

lemma, we bound the absolute-value of the coefficients of the radical, by Md.

Lemma 5.1 (Bound for p-adic radical). If a polynomial f of degree d has the absolute-value of its

coefficients bounded by M , then its radical has its coefficients bounded by MO(d).

Proof. We prove this using Euclid’s algorithm for finding gcd, when we consider the gcd of f and
any one of its first-order derivative f ′.

At each step of Euclid’s gcd algorithm, we have two polynomials qi and qi+1, where deg(qi) ≥
deg(qi+1). We compute the remainder of qi when divided by qi+1, assume it to be qi+2, and then
proceed to do the same with qi+1 and qi+2.

Now, it can be inductively shown that the coefficients of qi is bounded by MFi , where Fi is
the i-th Fibonacci number. This is true as while dividing qi−2 by qi−1, the quotient will have
its coefficients bounded by that of qi−2. This quotient multiplied by qi−1 will give the bound for
the remainder, which thus is bounded by the product of bounds of coefficients of qi−1 and qi−2.
Now, this procedure continues for log d steps, implying that the coefficients of the gcd of f and
its derivative is bounded by MFlog d = MO(d). Dividing f by this gcd will give the bounds on the
coefficient of rad(f), which is also MO(d). □

Therefore, w.l.o.g. we consider f(x1, x2) to be square-free having absolute value of coefficients

≤ MO(d), and continue with our algorithm of finding roots in Zp.

Representative roots in Z/pkZ vs roots in Zp. The return value of the algorithm, in the
base-case, is either the representative root (∗1, ∗2) when the exponent of p required gets achieved
(Step 2 of Algorithm 1), or linear-representative root (∗, c(∗)) (Steps 4-5 of Algorithm 1).

For large enough k, i.e. k > k0, we want to show that if a representative root (∗1, ∗2) is returned,
then the fixed part of the root is already a Zp-root. In the other case, for linear-representative
roots, we can simply use Hensel lifting to lift to Zp-roots (or, to as much precision as we wish).

Discriminant. Let f ′(x1, x2) be some first-order derivative of f(x1, x2). The resultant [CLO13,
Chapter 3] of f and f ′ w.r.t. x2 is denoted R(x1) := Resx2(f(x1, x2), f

′(x1, x2)), which is also one of
the discriminants of f . R(x1) is not identically zero in Zp, as this would imply: f and its derivative
have a common factor; contradicting the radical condition.

The roots of R(x1) given by x̂1 satisfy the condition that the univariate f(x̂1, x2) is square-full.
Furthermore, given x̂1, we can easily find the values of x2 (d-many), as it becomes the univariate
root-finding problem over Zp which has a famous solution (see Algorithm 3).

Bound to distinguish Zp roots. The main idea is to find a bound for the exponent of p
such that each root returned using root-finding is either a linear-representative root, or a unique
lift of this root is a Zp root. A similar bound was achieved for univariate polynomials by [DS20].
However, the complications of lifting multivariate roots did not arise there, as every p-adic root
corresponded to a p-adic factor.

Lemma 5.2 (Discriminant of radical). Let f(x1, x2) ∈ Z[x1, x2] be a polynomial of degree d whose
coefficients have absolute value bounded above by M . Let its radical polynomial be g := rad(f).
The roots of R(x1) = Resx2(g, g

′) in Zp are in one-one correspondence to the representative roots

of R(x1) mod pk, for any k ≥ k1 := Θ(d6 logM).

Proof. We have the polynomial f(x1, x2) of degree d. Its radical polynomial g := rad(f), has degree

≤ d and coefficients bounded by MO(d) (Lemma 5.1).
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The resultant polynomial R(x1) = Resx2(g, g
′) is the determinant of a (2d+1)× (2d+1) matrix

consisting of elements formed from the coefficients of g. Thus, the degree of R(x1) is < 2d2 + d,
and the absolute-value of the coefficients is < (dMd)2d+1.

Now, we need to find a bound on k1 such that the roots of R(x1) are in one-one correspondence to
those of g(x1, x2) mod pk1 . [DS20, Theorem 20] showed that the representative roots of a univariate
polynomial modulo pk, for k > d′(∆+1), are in one-one correspondence to the roots of that polyno-
mial in Zp, where d

′ is the degree and ∆ is the p-valuation of its discriminant. In our case of finding

Zp-roots of R(x1), the degree is 2d2 + d, while the discriminant is at most ((dMd)2d+1)2(2d
2+d)+1.

Thus, the valuation of discriminant of R is bounded by O(d4 logpM). Substituting the values of d′

and ∆, we have k1 := Θ(d6 logpM). □

Zp-roots. Consider g = rad(f) and k1 = Θ(d6 logM). Define g2(x2) := Resx1(g(x1, x2) , R(x1)).
Intuitively, roots x2 of g2 come from the roots x1 of R. So, again applying [DS20, Theorem 20]
on this univariate polynomial g2, it suffices to compute its roots mod pk2 , to compute its distinct

p-adic roots; where k2 is asymptotically logp(p
k1·2d2·d) = O(d9 logM).

Using the value of k2 as above, we find roots of g(x1, x2) from Root-Find(g, pk2). Let (ã1, ã2)
be the fixed-part of a root thus obtained. If R(ã1) ≡ 0 mod pk2 , then the above argument, that
defined k2, ensures that (ã1, ã2) does lift to a Zp-root of R, g2, g and f (in this case uniquely).

Non-root of discriminant. Thus, the case left is: R(ã1) ̸= 0 mod pk2 . Consider the univariate
g(ã1, x2). We know that its Zp-roots are different mod pk2 and at most d many; one of which is
ã2. Consider g1(x2) := p−v · g(ã1 , ã2 + x2), where v ≥ 0 is the p-valuation of g(ã1 , ã2 + x2) as
a polynomial over Zp. Note that x2 divides g1, but x22 does not divide g1 (mod p). Thus, 0 is a
simple-root of g1 and we can potentially Hensel lift it to p-adics.

To implement this formally, we need to increase the precision so that the extra p-factors can be
removed from g. Note that if we assume p ∤ g(ã1, x2) then v ≤ k2 + (k2 − 1)(d − 1) < d · k2. Fix
k0 := d · k2 = Θ(d10 logM). Now consider g̃(x) := p−v · g(ã1 + pk2x1 , ã2 + pk2x2) mod pk0 . By
the argument above, g̃ mod p is linear in x2 (it is easier to see by substituting x1 = 0). Thus, an
extension of this root has to end up in some leaf of Root-Find(g, pk0) algorithm as say (ã′1, ã

′
2);

which will Hensel lift to p-adic integral root(s) due to the linear x2 term in the lift.
Since the set of p-adic roots for f and g is the same, we could as well run Root-Find(f, pk0).

This proves the following lemma.

Lemma 5.3 (pk0 is p-adic). Given a polynomial f(x1, x2) ∈ Z[x1, x2] of degree d and having
absolute-value of coefficients bounded by M . Each root represented in the leaves of the tree of
Root-Find(f, pk0), for k0 := Θ(d10 logM), lifts to a Zp-root of f(x1, x2).

We further need the condition that the structure of this tree does not change with k for k ≥ k0.
In order to show that, we prove the following lemma. Denote R1(x1) := Resx2(g, ∂x2(g)) and
R2(x2) := Resx1(g, ∂x1(g))

Lemma 5.4 (Fix p-adic tree). If a leaf of the tree given by Lemma 5.3 returns a representative
root with the fixed part (a1, a2), that is not linear-representative, then R1(a1) = R2(a2) = 0 mod pk.
Moreover, (a1, a2) lifts to a unique root of f over Zp; and their number does not change as k grows
beyond k0.

Also, the tree (Fig.1) in our algorithm does not change, and remains isomorphic, for k ≥ k0;
except the leaf with the root 0.

Proof. As argued above, the representative roots which are not linear-representatives, must satisfy
the condition R1(a1) ≡ 0 mod pk0 . Using a similar technique we can show that R2(a2) ≡ 0 mod pk0

as well.
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Assume that for some large enough k, k ≥ k0, a new leaf in the tree of Figure 1 appears, with
the root (r1, r2) such that R1(r1) ≡ R2(r2) ≡ 0 mod pk. However, this leads to a contradiction as
the branch corresponding to (r1, r2) should have already been present in the tree at precision k0 in
the representative root.

As argued before, this root rj of Rj mod pk0 always lead to Zp roots of Rj for j = 1, 2 (due
to [DS20, Theorem 20]), and that of g2, g, f . Thus, the number of representative roots can not
decrease. Therefore, the number of representative roots which are not linear is fixed once we reach
k0, and hence (a1, a2) has a unique lift to Zp.

Together with Hensel lifting, it is then clear that, the linear-representative roots can neither
increase in number, nor reduce, as k ≥ k0 grows.

The only change that could happen is, for k ≥ k0, if the leaf with fixed root 0 is used to lift to
f(pvx1, p

vx2) mod pk, with k > v ≥ k0. This may create a new subtree under the old leaf 0; as
this type of branches are the only ones that were not explored in Algorithm 1 mod pk0 . □

The following examples should help illustrate the p-adic machinery more clearly.

Example 5.5. Consider the polynomial f = (x1−1)(x2−2) mod pk. The first step of our algorithm
has to be x1 = 1 or x2 = 2. Considering the root a := (1, 3), the polynomial after lifting becomes
x1(1 + px2), which is an (effective) linear form; thus, a linear-representative root will be returned,
which has x2 as the free variable while x1 will stay fixed to 1. This gives the leaf r := (1+pµ(∗), 3+
p∗), and a computable Zp-function µ(·), which allows the p-adic lift of a. In this case, µ = 0.

Example 5.6. Now, consider f(x1, x2) = (x1−px2)(x1−2px2) mod pk. Lifting the root a := (0, 1)
gives us (x1−1−px2)(x1−2−2px2), which is not yet effective linear. Choosing the next lifting-step
around the root (1, 0), the polynomial after lifting becomes (x1 − px2)(−1 + px1 − 2p2x2), which is
an (effective) linear polynomial; thus, a linear-representative root will be returned, corresponding
to (x1 − px2), which has x2 as the free variable while x1 depends on it. This gives the leaf r :=
(p+ p3µ(∗), 1 + p2∗), and a computable Zp-function µ(·), which allows the p-adic lift of a. In this
case, µ(w) := w.

However there are several roots in Zp, which can not be noticed modulo pk0 , because they are
indistinguishable from 0. This is seen in the following example.

Example 5.7. Consider the polynomial x31 + x32 mod pk, for p > 3 and 3|k. Some of its linear-
representative roots are (pj + pj+1∗ ,−pj + pj+1µ(∗)), for any j < k/3 and µ(w) := −w. Also,

(pk/3∗1 , pk/3∗2) is a non linear-representative root. It can lift to the p-adic root 0, but it can also
lift to (pk,−pk); which our algorithm could not explore due to the precision being only pk.

The following theorem completes the connection, of Algorithm 1, with all p-adic roots of f .
Basically, it scales up the roots by pv-multiple, whenever possible, and creates a new data-structure
for representatives in the leaves of the fixed tree modulo mod pk0 , in Fig.1. It can also be seen as
a way of further blowing-up the leaf of the fixed tree that gives the 0 root.

Theorem 5.8 (High val p-adic roots). We can efficiently ‘expand’ our leaves as follows:
(1) Define a set of representative-roots Hv, for v ≥ k0, s.t. for each root a ∈ Hv , pva lifts to a

p-adic root of f .
(2) We can compute the fixed tree for Hk0 efficiently by Algorithm 1. The other sets Hv, for

v > k0, lift from the same representatives as in the leaves of Hk0; so we do not recompute them.
Let (r′1, r

′
2) be a p-adic root of f . Then, ∃v ≥ 0 , ∃ root a ∈ Hv lifting to a′ , for which

(r′1, r
′
2) = pva′. In this sense, our fixed tree covers all p-adic roots of f .

Proof. Let u be the p-valuation of r′, i.e. pu||(r′1, r′2). If u = ∞, i.e. (r′1, r
′
2) = 0, then clearly some

leaf in the set Hk0 will satisfy the required statement.
18



If u < k0, then r′ ̸= 0 mod pk0 ; so it will be covered in some nonzero leaf of the tree of Lemma
5.4.

Assume ∞ > u ≥ k0. Now consider the system f(pu ·x) = 0, say over Zp. Write f =:
∑

m≤i≤d fi
into homogeneous-parts, with m being the least-degree part (fm ̸= 0). Thus, by homogeneity, the
system becomes

(11) 0 = f(pu · x)/pum =
∑

m≤i≤d

pu(i−m) · fi(x1, x2) .

If f = fm (i.e. f is homogeneous), then f(pu · x) = 0 iff f(x) = 0. Thus, Hv, for all v ≥ 0, is given
by the fixed tree in Lemma 5.4 and we are done.

Assume f ̸= fm (i.e. f is inhomogeneous). Then, the above system implies: fm(x1, x2) ≡
0 mod pu. Since fm has bounded coefficients and u ≥ k0, we compute the fixed tree (Lemma
5.4 for fm mod pk0) efficiently; and all its leaves (except 0) lift to p-adic roots. Each leaf, in
our Algorithm 1 can be viewed as defining a nontrivial p-adic map µ : Zp → Zp s.t. w.l.o.g.,
fm(w, µ(w)) = 0, where w is a variable. Check whether f(puw , puµ(w)) = 0. Then, by repeating
this argument (on fm+1 etc.) we can deduce: fi(w, µ(w)) = 0 for all m ≤ i ≤ d. Since, µ is a p-adic
function common to these polynomials, that are all upper bounded by the parameters of f , we can
learn µ by working with each fi just mod pk0 .

Algorithmically, we find this common µ by first invoking Algorithm 1 on fm mod pk0 and then
verifying it for f(pk0w , pk0µ(w)) ≡ 0 mod pk0(d+1). [Or, we could construct the tree common to
the system {fm, . . . , fd} mod pk0 .]

But this shows an interesting property p-adically that f(pk0w , pk0µ(w)) = 0 iff fi(w, µ(w)) = 0,
for all m ≤ i ≤ d iff f(puw , puµ(w)) = 0, for all u ≥ 0. Essentially, the high-valuation roots arise
only from homogeneous polynomial system! □

Lemmas 5.3-5.4 and Theorem 5.8 describe the p-adic nature of the tree and the representative
roots, after the threshold bound of k0. This finishes the proof of Corollary 1.2.

5.2. Computing Igusa’s local zeta function: Proof of Corollary 1.3. We will show how to
compute the Poincaré series, by expressing the number of roots of f(x1, x2) mod pk, for every k, in
a special form. In this subsection, we sketch this algorithm for bivariates using Section 5.1. With
more work it can be generalized to n-variates based on the machinery of Section 5.3; thus proving
the rationality of the Poincaré series in general.

When we consider f modulo pk, for large enough k’s, the fixed-part of the representative-roots
will correspond to p-adic roots, while the remaining-part has ‘free’ coordinates, eg. (∗1, ∗2), which
get fixed as we increase k. For k = k0, denote R as the subset of representative-roots which are
not linear-representative roots, while the set L as the set of linear-representative roots.

Recall the bound of k0 = Θ(d10 logM) (Lemma 5.3) to distinguish between Z/pkZ and Zp-
roots: For small values of k, i.e. k < k0, we can count the number of roots in deterministic time
poly((d + p + logM)d). For large k’s, however, we want to prove a special form to sum up the
infinite Poincaré series.

Non linear-representative roots R. Consider a root in R; its fixed-part, say r, will lift to
Zp-roots of f . Its representative part appears due to the contribution of extra p-powers by the
other derivatives that appear in the Taylor-series around r. Let e be the multiplicity of r: which
can be found as the (largest) e such that f ∈ ⟨x− r⟩e, but f ̸∈ ⟨x− r⟩e+1.

Now, f can be written as

(12) f =

e∑
i=0

ci(x1, x2) · (x1 − r1)
i(x2 − r2)

e−i .
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Define v := vp(gcd(ci(r) | i)). Since r is not a common root of ci’s, this value (e, v) does not change
as we increase k and make r more precise. Consider the Zp-root r′ that r lifts to. Let us now

consider the ways in which the digits of r′ may be perturbed, and yet it be a root (mod pk), as we
increase k arbitrarily. Let ℓ1 denote the length up to which we want to keep r1 equal to r′1 and the
rest to ∗ (similarly define ℓ2). Consider

(13) f(r′1 + pℓ1x1 , r
′
2 + pℓ2x2) =

e∑
i=0

ci(r
′ + plx) · (r′1 − r1 + pℓ1x1)

i · (r′2 − r2 + pℓ2x2)
e−i .

The valuation of this expression is the minimum of vp(ci(r))+ℓ1i+ℓ2(e− i), over all i. If this is ≥ k

then x can take any value in Z/pk−ℓ1Z × Z/pk−ℓ2Z, and extend, by the above equation, to a root
mod pk. This is what should happen as we are not in the linear-representative case. We need to
count these possibilities, which will give us the number of ways the root r could lift as k increases.
For this, we should consider only those possibilities of (ℓ1, ℓ2) that are minimal, i.e. (ℓ1 − 1, ℓ2) and
(ℓ1, ℓ2− 1) should violate the linear-inequality system. This is a system of half-spaces in the plane,
forming an open polygon P with either ≤ e vertices or just one hyperplane. It can be checked that
in all cases the counting function

(14)
∑

(ℓ1,ℓ2)∈P

p(k−ℓ1) · p(k−ℓ2)

can be rewritten as a sum of pui(k), i ≤ e, where ui(k) is a linear function in k over Q. Let us call
this sum Nk,r(f). Importantly, the number of summands here is fixed, and does not grow with k.

The following example illustrates the notion of this polytope.

Example 5.9. Consider the polynomial f(x1, x2) = x21x2 mod pk. Here, for the root (0, 1), the
value of e is 2, and accordingly ℓ1, the precision of x1 required, is = k/2. However, the value of e
for (1, 0) is 1 and ℓ2 = k. For the root 0, both variables contribute powers of p, where they are zero
with precision ℓ1, ℓ2 respectively. Then, we must have 2ℓ1 + ℓ2 ≥ k, which gives the hyperplane in
ℓ1, ℓ2; summing over all these values we can calculate Eqn.14.

Linear-representative roots L. Consider a linear-representative root r ∈ L, with fixed part
as a of length (e1, e2) respectively. Up to linear transformations, we can claim that our algorithm
defines a computable Zp-function µ(·) s.t. for all u ∈ Zp, f(x1+a1+ pe1u , x2+a2+ pe2µ(u)) = 0.
Using this fact, we write Equation 12 in the ideal form, defining (e, v) as the largest integers s.t.,
in Zp[x],

(15) f(x1 + a1 , x2 + a2 + pe2µ(0)) ∈ pv · ⟨x1 , x2⟩e + ⟨x1 , x2⟩e+1 .

Note that we have defined (e, v) by fixing u = 0. The motivation is that if we use some other u in
Zp, we will get the same values (e, v). Otherwise, say for some 0 ̸= u ∈ Zp ,

f(x1 + a1 + pe1u , x2 + a2 + pe2µ(u)) ∈ pv
′ · ⟨x1 , x2⟩e

′
+ ⟨x1 , x2⟩e

′+1 .

Then, by Lemma 5.4, e′ = e, because the tree remains isomorphic, even when we make the root
more precise than k ≥ k0. In the same algorithm, lifting steps cause division by p-powers and reach
the leaf r, so v′ remains v even when we make the root more precise than k ≥ k0.

Fix u ∈ Z/pk−e1Z, and consider the unique p-adic root r′ that the leaf r gives above. We can now
follow the counting process done after Equation 13. Varying u, the polytope boundary P does not
change (similar to the argument given after Equation 15); on the other hand, fixing (ℓ1− e1)-digits
of u (resp. ℓ1 value), fixes that many in µ(u) (resp. ℓ2 value). Thus, we get a partial count (slightly
different from Equation 14) as:
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(16)
∑

(ℓ1,ℓ2)∈P ∪{(k−e2)−(ℓ1−e1)≤ (k−ℓ2)}

p(ℓ1−e1) · p(k−e1)−(ℓ1−e1) · p(k−e2)−(ℓ1−e1) .

We call this sum N ′
k,r(f); and is written as a sum of pui(k), i ≤ e, where ui(k) is a linear function

in k over Q.

Blowing-up root 0. What is missing here are the roots with valuation in the interval [k0, k−1],
because these are zero mod pk0 and so they get missed in L and R. To account for these, we need
to resort to the set Hk0 , constructed in Theorem 5.8 that ‘blows-up’ the leaf node 0 in the tree of
finding roots modulo pk0 .

Now, from the way Algorithm 1 works, the representatives in Hk0 generate a disjoint set of
(Z/pkZ)-roots, which are in number =

∑
r∈Hk0

Nk0,r. This sum is easy to precompute (by Theorem

1.1), as it is independent of k. Each of these roots can be multiplied by pe, for e ∈ [k0 . . . k− 1], to
get the ‘high’-valuation roots. Thus, the total number of such roots is = (k − k0) ·

∑
r∈Hk0

Nk0,r.

Overall, the above summands account for all the Z/pkZ-roots of f , for k ≥ k0.

Summing up, the number of roots modulo pk, for k < k0, can be counted by Theorem 1.1.
Fixing k = k0, as described above, we compute the data related to the fixed tree; which has the
linear-representative roots in L, Hk0 , and the remaining representative-roots in R.

Then, the number of roots of f modulo pk, Nk(f), is given by

(17) Nk(f) =
∑
r∈R

Nk,r(f) +
∑
r∈L

N ′
k,r(f) + (k − k0) ·

∑
r∈Hk0

Nk0,r .

Recall that the number of roots modulo pk due to any representative root r (or a leaf in the fixed
tree in Theorem 5.8) is Nk,r(f) resp. N

′
k,r(f); defined separately in Equations 14 and 16.

Now, the Poincaré series is given by (eg. see [DS20])

(18) P (t) = P0(t) +
∑
r∈R

Pr(t) +
∑
r∈L

Qr(t) +

 ∑
r∈Hk0

Nk0,r

 ·
∑
k≥k0

(k − k0) · (t/p)k ,

where P0(t) =
∑

k<k0
Nk(f) · (t/p)k , Pr(t) :=

∑
k≥k0

Nk,r(f) · (t/p)k and Qr(t) :=
∑

k≥k0
N ′

k,r(f) ·
(t/p)k.

The expression of Equation 17 is a sum of either pui(k) or ui(k) , i ≤ O(d), where ui(k) is a linear
function in k over Q. Thus, Equation 18 can be easily expressed in a ‘closed-form formula’ by
summing the geometric progression over k’s, as was done in [DS20, Lemma 23]. Thus, Pr(t), Qr(t)
are rational functions in Q(t). Therefore, the rational function for the Poincaré series P (t) is
computable as promised in Corollary 1.3.

5.3. Generalization to n-variates: Proof of Theorem 1.4. In this subsection, we generalize
our approach to root-finding and counting to n-variate polynomial f(x) using similar techniques
as used in bivariates, and reducing the problem to finding roots of (n − 1)-variate polynomial
systems. In order to do so, we first show a modification to Algorithm 1 in order to solve a system
of polynomial equations mod pk. This subsection gives an overview of how to extend the single
bivariate root-finding algorithm to that for solving a system of bivariates. Then, using that how
to solve 3-variate systems. The proof can be straightforwardly generalized to n-variates, for any
n ≥ 3.

Solving bivariates simultaneously. Suppose we havem polynomials f1(x1, x2), . . . , fm(x1, x2),
each of degree ≤ d. At each step of lifting, we iterate over all the roots of each polynomial sepa-
rately, but in parallel, such that the local roots of each iteration are common to every polynomial.
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This can be intuitively thought of as creating trees like Figure 1 corresponding to each polynomial,
whose nodes are ‘isomorphic’, i.e. we branch corresponding to a root if and only if the root is present
in the trees of all the polynomials. Also, whatever linear transformation we apply on x acts on all
the fi’s simultaneously. Thus, we refer to this process as parallel search-tree.

We continue growing these trees (and considering only those branches which correspond to a
common root); with effective degree decreasing as we go down, until the stopping conditions are
obtained. When some polynomial has a representative root (∗1, ∗2), then we can proceed to finding
roots of the remaining set of polynomial. However, when linear-representative roots are obtained
for some polynomial, the analysis can be divided into two cases by their rank. When the linear
forms (i.e. given by coefficients of x1 and x2) are of rank 1 or 2. For rank 2, we can check for a
unique root by solving simple linear equations; so, they either have one common root, or none.

The difficulty arises when these linear forms are of rank 1. Again, the isomorphism of the
trees corresponding to each polynomial will be used, but after reducing this problem to solving
simultaneous equations over lesser number of polynomials.

Solving bivariates– rank= 1 linear forms. Suppose we have the polynomials in the form
ax1 + bx2 + ci + phi(x1, x2), where a, b, ci ∈ {0, . . . , p− 1}, for all i ∈ [m]. If all the ci’s are not the
same, we obviously do not have a solution; so we terminate this branch. Assume ci = c and write
the polynomials in the basis of L := (ax1 + bx2 + c) and x2, w.l.o.g assuming a ̸= 0. (Otherwise,
we can use the basis L, x1). We have the system as

L ≡ pg1(L, x2) mod pk ; L ≡ pg2(L, x2) mod pk ; . . . ; L ≡ pgm(L, x2) mod pk ,(19)

where gi’s can be obtained from hi’s by using the change of basis. So, we get the local-root here,
namely L must be 0 mod p in the current step (based on any value of x2). Hence we lift L to pL.
This grows the tree further. Performing this transformation and subtracting the first equation from
each of the other equations, we have :

L ≡ g1(pL, x2) mod pk−1 ; 0 ≡ g̃2(pL, x2) mod pk−1 ; . . . ; 0 ≡ g̃m(pL, x2) mod pk−1 ,(20)

where g̃i = gi(L, x2)− g1(L, x2), for i ∈ {2, . . . ,m}.
Now, on the (m−1) g̃i, we apply another instance of Algorithm 1, in a parallel way. For a fixing

of x2 from the latter m− 1 equations in Equation 20, we uniquely get the value of L from the first
equation (where the effective polynomial is linear in L). Using these values, we lift both L and
x2, creating a Figure 1-like tree where the branches are such that they satisfy all the m equations.
Finally, at the leaf we get the representatives for x2 too, and halt the algorithm.

Thus, we create the m isomorphic trees for O(d) many lifting steps as before (Figure 1), then
restrict the linear condition on the first polynomial and simultaneously solve the next m− 1 poly-
nomials modulo a smaller power of p and continue with our construction of m − 1 isomorphic
trees. Using this subroutine, we can find all the roots of the system of bivariate equations in time
complexity same as that of Theorem 1.1, along with a multiplicative overhead of m for storing this
array of polynomials in each node.

Solving 3-variate— Lifting Step. Given a root a ∈ F3
p and polynomial fj(x) in the j-th step,

we find the polynomial after lifting as fj+1(x) = p−vfj(a + px), where v = vp(fj(a + px)) is the
val-multiplicity of the root a. Theorem 2.1 can be similarly proved to show that effective degree
reduces in all cases other than when d1 = 1 or v = d1. We again form a tree similar to Figure 1
with the invariant that effective degree must reduce along depth.

Solving 3-variate— Val-multiplicity d1 case. As in Algorithm 2, we again ‘jump’ over
the val-multiplicity d1 cases directly so that the recursion can continue to degree reduction cases.
Again, Lemma 3.1 can be proved for 3-variates to show that the polynomial must have the d1-form
⟨x1 − a1, x2 − a2, x3 − a3⟩d1 , where a is a val-multiplicity d1 root. However, when multiple val-
multiplicity d1 roots exist, w.l.o.g. given by 0 and a, where a1 ̸= 0, we can modify the proof of
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Lemma 3.2 to show that the effective polynomial is zero modulo ⟨a1x2 − a2x1, a1x3 − a3x1⟩d1 . The
rank of the nonzero roots, given by ⟨x−a⟩, can be 1 or 2 (in general, 1, 2, . . . , n− 1 for n-variates).

In the case of rank=2 val-mult=d1 roots, there will be only one linear polynomial, say f ∈
⟨a1x2−a2x1⟩d1 + ⟨p⟩. So, the equations will be like Eqn.7, except that the polynomials uj ’s will be
in two variables, say x2 and x3. We will form a bivariate system, and solve it using the simultaneous
bivariate root-finding as discussed above; to find all the representative-roots for x2, x3. This new
version of Algorithm 2 will take poly((k + d+ p)d)-time; and make the tree this much wider.

In the case of rank=1 val-mult=d1 roots, we will have a multinomial expansion having two linear
forms {a1x2− a2x1, a1x3− a3x1} instead of a single binomial expansion as done in Equation 9. So,
now, we have two linear forms L,L′ instead of a single L1. We need to find the values of the third
variable, say x3, such that the resulting effective polynomial after lifting is again in ⟨L,L′⟩d1 . This
gives constraints similar to Equation 8. From these, we can use the univariate Algorithm 3 to solve
them.

Finally, the techniques of Section 3.1 can be smoothly generalized to search for the contiguous
d1-forms in poly((k + d + p)d)-time. In particular, we will search them in the decreasing order of
the rank of underlying val-mult=d1 roots: rank=2, rank=1 and then rank=0 in the last.

Conclusion. Using these techniques, we can find the roots of f(x) mod pk, for 3-variates where
the only difference from bivariates is the handling of contiguous val-multiplicity d1 roots (due to the
more possibilities of d1-forms). The same extension can be performed for n-variate m polynomials,
for any constant n. Thus, Algorithm 1 fits well in the general framework, and finds all the roots.

Time complexity. For a 3-variate polynomial f , at each step of the tree (Fig.1), there are
O(dp3) branches corresponding to val-mult< d1 roots. For val-mult=d1 roots, there are three
ordered possibilities in the chain: rank=2 val-mult=d1 root, rank=1 val-mult=d1 roots, and rank=0
(unique) val-mult=d1 roots. Similar to Lemma 3.3, we can show that rank can not increase after
lifting by a val-mult=d1 root.

For rank=2, we solve a system of bivariate equations. The number of possible branches of
bivariates is O((k2d+ p2)2d). Furthermore, the number of possibilities of these special contiguous
chains is O(k3). Therefore, the total number of leaves of the tree for 3-variates will be O( ((k2d+

p2)2d · k3 + p3)d ), which is bounded by O((k+ d+ p)(4d)
2
). Assume, for induction hypothesis, that

the time complexity, for any n, is bounded by O((k + d+ p)(2d(n−1))n−1
).

For n-variates (n ≥ 3), the val-multiplicity d1 roots will have ranks from n−1 to 0. For rank=(n−
1), we get the maximum upper bound. We will be solving a system of (n − 1)-variate equations,

which will lead to O((k + d + p)(2d(n−2))n−2
) possibilities and representative-roots. Furthermore,

there are kn−1 possibilities for the chain. Thus, one tree size is s1 := O( (kn−1(k+d+p)(2d(n−2))n−2
+

pn)2d ). But we may need to repeat this n−1 times on each leaf, when we have a system of n-variates

to solve. Thus, the time becomes sn−1
1 = O((k + d+ p)(2d(n−1))n−1

).

Using this technique for finding all the roots modulo pk for n-variates, we can generalize the
algorithms for finding Zp-roots and computing the Igusa local zeta function for a system of m
polynomials in n-variables as well. For finding roots in Zp, we consider the resultant w.r.t. one
variable at a time, find a bound similar to Lemma 5.2, and proceed with the analysis of roots which
are in Zp or are not roots of the discriminant. At each step, the bounds according to one variable
at a time will be obtained, which get multiplied to give a bound k0 for f(x) such that roots of
f(x) mod pk0 gives us roots which correspond to Zp roots as well. This will be a generalization of
Theorem 5.8 to n-variates. Similarly we can count roots, where the number of possibilities due to
linear-representative roots depends on the rank of the linear forms, and the sum will again be a
rational form.

23



The complexity of finding Zp points and that of computing Igusa local zeta function will remain

deterministic poly((m logM + p+ d)(2d(n−1))n−1
)-time.

6. Future work

Root finding of bivariates and of n-variates for any constant n gives rise to the following questions
of finding faster algorithms.

(1) Can root-finding be performed for constant d and n, in polylog(p)-time?
(2) Can root-finding of f(x1, . . . , xn) be reduced to root-finding of f(x1,at + b), with high

probability, for a,b ∈ (Z/pkZ)n−1? This would also handle the general n case.
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Appendix A. Preliminaries

We describe some useful notation and previous works.
We use x to denote the tuple (x1, x2, . . . , xn). Operations are similarly defined as a+b := (a1+

b1, a2+ b2, . . . , an+ bn), and c ·a := (c ·a1, . . . , c ·an), for a scalar c. Similarly, for i = (i1, i2, . . . , in),

we have xi = xi11 x
i2
2 . . . xinn with degree |i|, and i! := i1!i2! . . . in!.

Based on the Taylor’s expansion of polynomials in univariates, we define multivariate Taylor’s
expansion.

Definition A.1 (Taylor’s expansion/ series). Given a polynomial f(x) of degree d, we can write
it as (over any characteristic)

(21) f(a+ x) =

∞∑
ℓ=0

∑
|i|=ℓ

∂xif(a)

i!
·

n∏
j=1

x
ij
j

 ,

where ∂xif := ∂i1+···+inf

∂x
i1
1 ...∂xin

n

is an order |i| partial derivative.

For a prime p, we can write any integer a as a power series a =: a0 + a1p + a2p
2 + . . . , for

ai ∈ {0, 1, . . . , p− 1}. We write ã ∈ Zp, the ring of p-adic integers, as a tuple (a0, a1, a2, . . . ). The

j-th coordinate corresponds to aj , and ã mod pk is defined as the projection upto the (k − 1)-th

coordinate, i.e. a0 + a1p + . . . ak−1p
k−1. Similarly, we define the field of p-adic numbers as the

fraction field of Zp, denoted as Qp. For more literature on p-adic numbers, we direct the reader to
[Gou97, Kob12].

Definition A.2 (Valuation). For an integer n and a prime p, we define its valuation w.r.t. p,
denoted vp(n), as the largest integer v such that pv|n.

Definition A.3. A representative of a ring R, denoted by the symbol ∗, takes all values in the ring
R. Formally, it is the set ∗ := {a|a ∈ R}.

We further define the operations:

• b+ ∗ = {b+ a|a ∈ ∗} for b ∈ R,
• b∗ = {ba|a ∈ ∗} for b ∈ R.

Using this definition, for β + pℓ∗ ⊆ Z/pkZ for β ∈ Z/pℓZ, ℓ ≤ k, we have

(22) β + pℓ∗ = {β + pℓa|a ∈ Z/pk−ℓZ}
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In a similar fashion, a representative root of a polynomial f(x) ∈ Z/pkZ is denoted by a set
β+ pℓ∗ for β ∈ Z/pℓZ, ℓ ≤ k such that for any A ∈ β+ pℓ∗, we have f(A) ≡ 0 mod pk. The length
of this representative root is the number of precision coordinates of the fixed part β, which is ℓ.

For more properties of representative roots, we direct the reader to [Pan95, BLQ13, DMS21,
GCM21].

Solving univariates simultaneously. Using this compact notation, we present the standard
Algorithm 3 to find all the roots of a univariate polynomial f(x) ∈ Z/pkZ; which is due to [Pan95,
BLQ13, DMS21]. However, as required in this paper, we give a slight modification where we solve a
system of univariates modulo pk. The algorithm starts with the input array (f1, . . . , fr, p, k, . . . , k).
This can be seen as a slight modification of the Root-Find algorithm ([DMS21, Algorithm 1]) where
instead of looping only over the roots of the polynomial, we loop over the common roots in order
to find a root of all the polynomials in the system.

Algorithm 3 Root finding of f1(x), . . . , fr(x) mod pk

1: procedure Root-Find-BLQ(f1, . . . , fr, p, k1, . . . , kr)
2: if r = 0 then return ∗
3: if ∃i such that fi(x) ≡ 0 mod pki or ki = 0 then
4: return Root-Find-BLQ(f1, . . . , fi−1, fi+1, . . . , fr, p, k1, . . . , ki−1, ki+1, . . . , kr)

5: R := roots of gcd{fi(x) mod p | i ∈ [r]} [Eg. use Cantor-Zassenhaus’ algorithm [CZ81]].
6: if R == ϕ then return ϕ

7: S := ϕ
8: for a ∈ R do
9: f̃i(x) := pvifi(a+ px) ∀i ∈ [r], where vi = vp(fi(a+ px)).

10: Ra := Root-Find-BLQ(f1, . . . , fr, p, k − v1, . . . , k − vr)

11: S := S ∪ (a+ pRa)

12: return S

The correctness of Algorithm 3 directly follows from [BLQ13, Corollary 4], where they prove
the correctness for a single polynomial. [BLQ13, Corollary 4] also states that the number of
representative roots is at most d many when only a single polynomial is considered.

Theorem A.4. Algorithm 3 runs in randomized poly(maxi deg(fi), log p, k) time and returns at
most d-many representative roots.
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